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Abstract

An e.cient method based on the KarhunenÐLoe�ve Galerkin procedure is proposed for the solution of inverse problem
of estimating the time!varying strength of a heat source in a two!dimensional heat conduction system[ The KarhunenÐ
Loe�ve Galerkin procedure converts a given system into a model with the minimum degree of freedom\ and consequently
the number of equations to be solved in the inverse analysis is minimized\ resulting in the drastic reduction of computation
time[ The performance of the present technique of inverse analysis using the KarhunenÐLoe�ve Galerkin procedure is
evaluated by several numerical experiments\ and is found to be very accurate as well as e.cient[ Þ 0887 Elsevier Science
Ltd[ All rights reserved[

Nomenclature

ai spectral coe.cient premultiplying the ith empirical
eigenfunction
d"t# conjugate direction of the regular conjugate gradi!
ent method
D"t# conjugate direction of the modi_ed conjugate
gradient method "equation 27#
G"t# time!varying function of the dimensionless
strength of heat source
Hji matrix de_ned in equation "00#
J performance function de_ned in equation "03#
K"x\ x?# two!point correlation function of the
KarhunenÐLoe�ve decomposition
ME number of basis functions employed in the
KarhunenÐLoe�ve Galerkin procedure
MO number of measuring points
pk"t# adjoint variable of the low dimensional model
P"x\ y\ t# adjoint variable de_ned in equation "05#
Qijl matrix de_ned in equation "01#
R residual de_ned in equation "7#
Si vector de_ned in equation "02#
t dimensionless time
T dimensionless temperature _eld[

� Corresponding author[

Greek symbols
a coe.cient determining the dependence of thermal
conductivity on temperature ðcf[ equation "5#Ł
g coe.cient de_ned in equation "13#
d Dirac delta function
dai variation of the spectral coe.cient ai

dJ variation of the performance function
dn function de_ned by equation "4#
dT variation of the dimensionless temperature _eld
k dimensionless thermal conductivity
lk the kth eigenvalue ðcf[ equation "0#Ł
r optimal step length in the conjugate gradient method
s standard deviation of measurement error
fi the ith empirical eigenfunctions
v Gaussian distributed random number ðcf[ equation
"41#Ł
V system domain
9J gradient of the performance function[

Subscripts
m measurement
mCG modi_ed conjugate gradient method[

Superscripts
� experimental measurements
$ position of heat source[
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0[ Introduction

Inverse heat transfer problems have numerous impor!
tant applications in various branches of science and
engineering[ For example\ the temperature of a very hot
surface is not easily measured directly with sensors[
Usually sensors are placed beneath the surface and the
temperature of the hot surface is estimated by inverse
analysis[ Other examples of inverse heat transfer are the
estimation of unknown space!dependent thermophysical
properties of materials from the temperature recordings
at the boundary surfaces of the domain[

Usually these inverse problems are ill!posed\ i[e[\ the
solution is not unique and sensitive to the measurement
errors ð0Ł[ There are many methods now available which
alleviate ill!poseness of inverse problems\ e[g[\ the least
square method modi_ed by the addition of regularization
term and the use of conjugate gradient method where the
regularization is inherently built in the iterative procedure
ð1\ 2Ł[

In the present paper\ we propose an e.cient method
based on the KarhunenÐLoe�ve Galerkin procedure for
the solution of inverse heat transfer problem[ The
KarhunenÐLoe�ve decomposition is a technique enabling
a stochastic _eld to be represented with a minimum
degree of freedom[ If the KarhunenÐLoe�ve decompo!
sition is applied to a given stochastic _eld\ we get a set of
empirical eigenfunctions[ When we want to reproduce
that same stochastic _eld with a certain criterion of accu!
racy it can be represented with a minimum degree of
freedom when employing these empirical eigenfunctions[
A Galerkin method employing these empirical eig!
enfunctions of the KarhunenÐLoe�ve decomposition is
called the KarhunenÐLoe�ve Galerkin method[ Therefore\
through the KarhunenÐLoe�ve Galerkin procedure\ the
governing equation of a given heat transfer problem is
reduced faithfully to a model with a small degree of
freedom[ In our previous paper ð3Ł it has been dem!
onstrated that the dynamics of a ~ow reactor\ governed
by a convection!di}usion equation with a complicated
~ow _eld\ can be described faithfully by a small number
of ordinary di}erential equations with the help of the
KarhunenÐLoe�ve Galerkin procedure[ Therefore the
number of equations to be solved in the inverse heat
transfer problem is minimized when the KarhunenÐ
Loe�ve Galerkin procedure is employed\ consequently
reducing computational time greatly[

We apply this technique of inverse heat transfer
employing the KarhunenÐLoe�ve Galerkin procedure to
the estimation of time!varying strength of a heat source
in a two!dimensional heat conduction system as depicted
in Fig[ 0[ The system under consideration is a two!dimen!
sional square domain with a time!varying heat source
G"t# located at "x$\ y$#[ The thermal conductivity is
assumed to be strongly dependent on temperature\ mak!
ing the governing equation nonlinear[ The inverse prob!

Fig[ 0[ The system and the shape and location of the function
d39"x−x$#d39"y−y$#[

lem at hand is the estimation of the unknown function
G"t# based on the temperature readings of a ther!
mocouple located inside the domain[

1[ Theory

In this section\ we explain brie~y the KarhunenÐLoe�ve
Galerkin procedure and the way how it is applied to the
estimation of unknown strength of heat source in the
domain[ The original partial di}erential equation is
eventually reduced to a set of ordinary di}erential equa!
tions by means of the KarhunenÐLoe�ve Galerkin
procedure[ The estimation of the strength of heat source
in the domain is performed by using the conjugate gradi!
ent method[

1[0[ The KarhunenÐLoe�ve decomposition

To make this paper self!contained\ we introduce the
essence of the KarhunenÐLoe�ve decomposition[ The
KarhunenÐLoe�ve decomposition\ expressed brie~y\ is a
method of representing a stochastic _eld with a minimum
number of degree of freedom[ As a means of explaining
the KarhunenÐLoe�ve decomposition we select N arbi!
trary irregularly shaped functions with n � 0\ 1\ [ [ [ \N[
From now on\ we call the irregular shapes of these func!
tions "vn# {snapshots|[ In Park and Cho ð3Ł\ it is shown
that the most typical or characteristic structure f"x#
among these snapshots "vn# is given by solving the fol!
lowing eigenvalue problem of the integral equation "0#]

gV
K"x\ x?#f"x?# dx? � lf"x# "0#

where the kernel of the integral equation K"x\ x?# is
de_ned as\

K"x\ x?# �
0
N

s
N

n�0

vn"x#vT
n "x?#[ "1#
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Usually this kind of integral equation can be solved by
means of the SchmidtÐHilbert technique ð4Ł[

Let|s express the eigenvalues\ l0 × l1 × = = =× lN and
the corresponding eigenfunctions f0\ f1\ [ [ [ \fN in the
order of magnitude of eigenvalues[ The eigenfunction f0

corresponding to the largest eigenvalue l0 is the most
typical structure of the members of the snapshots "vn#
and the eigenfunction f1 with the next largest eigenvalue
l1 is the next typical structure\ and so forth[ Since the
kernel K"x\ x?# is symmetric\ these empirical eig!
enfunctions "fn# are mutually orthogonal[ These empiri!
cal eigenfunctions "fn# can represent the system in the
most e.cient way[ The KarhunenÐLoe�ve Galerkin pro!
cedure\ employing these empirical eigenfunctions as trial
functions of a Galerkin method\ reduces the original sys!
tem to a low dimensional model with a minimum degree
of freedom[

1[1[ The system and `overnin` equations

The dimensionless governing equation for the unsteady
heat conduction with a time!varying heat source with
temperature dependent thermal conductivity in a two!
dimensional square domain is given by

1T
1t

�
1

1x 0k
1T
1x1¦

1

1y 0k
1T
1y1¦G"t#dn"x−x$#dn"y−y$#

"2#

where all the variables are dimensionless\ and "x$\ y$#
is the location of heat source[ The relevant initial and
boundary conditions are

T"x\ y\ t � 9# � 9 "3a#

T"x � 9\ y\ t# � 9 "3b#

T"x � 0\ y\ t# � 9 "3c#

T"x\ y � 9\ t# � 9 "3d#

T"x\ y � 0\ t# � 9[ "3e#

The function dn"x#\ which approximate the point source
in the domain\ is de_ned by]

dn"x−x$# �
n

1 cosh1"n"x−x$##
"4#

and becomes the Dirac delta function as n approaches
in_nity[ In the present work\ we take n � 39 with
"x$\ y$# �"9[14\ 9[14#[ The shape and strength of the point
source d39"−x$#d39"y−y$# is plotted in Fig[ 0\ together
with the variable grid system "39×39# employed in the
numerical computation[ The dimensionless thermal con!
ductivity k is assumed to depend on dimensionless tem!
perature as follows]

k � 0¦aT "5#

where a � 9[90[
The governing equation "2# with the relevant boundary

conditions is solved by a _nite di}erence method with

variable grids "39×39#\ which is found to be su.cient
for the resolution of the temperature _eld[ The inverse
heat transfer problem under consideration is to estimate
the unknown function G"t# from the temperature re!
cordings of a thermocouple positioned inside the domain[

1[2[ Construction of empirical ei`enfunctions

Before applying the KarhunenÐLoe�ve Galerkin pro!
cedure to reduce the degree of freedom of the system\ we
need a set of empirical eigenfunctions which capture the
system behavior satisfactorily at least for the ranges of
parameters of interest[ These useful eigenfunctions can
be obtained only from an ensemble of snapshots which
are representative of the system characteristics[ The low!
dimensional model to be used in the inverse analysis
should predict accurately the temperature distribution in
the domain for a given heat source strength G"t# located
at "x$\ y$#[ A set of temperature _elds is obtained by
solving equations "2#Ð"3# while imposing a step change
on G"t# from 9[9Ð14[9 and recording the transient tem!
perature _eld at a certain time interval until the steady
state is reached[ We obtain 599 temperature _elds in
this way\ which may be called the snapshots[ When the
KarhunenÐLoe�ve decomposition is applied to this ensem!
ble of snapshots of the temperature _eld\ we obtain a
total of 599 empirical eigenfunctions in the order of their
importance in characterizing the system[ Figure 1 depicts
typical snapshots and Fig[ 2 shows the _rst\ the second\
the third\ the eighth\ the ninth and the tenth eigen!
functions with the corresponding normalized eigenvalues
l0 � 9[8564\ l1 � 1[823×09−1\ l2 � 1[729×09−2\
l7 � 0[272×09−6\ l8 � 1[340×09−7 and
l09 � 3[282×09−8[ Among the six eigenfunctions shown
in Fig[ 2\ the empirical eigenfunctions with large eig!
envalues "cf[ Fig[ 2aÐc# represent the large scale structures
of the temperature _eld\ while empirical eigenfunctions
with small eigenvalues "cf[ Fig[ 2dÐf # represent the small
scale structures of the temperature _eld[

1[3[ The low!dimensional model

The KarhunenÐLoe�ve Galerkin procedure\ which is a
Galerkin method employing the above empirical eig!
enfunctions as basis functions\ lumps the governing equa!
tion of the temperature _eld\ equations "2#Ð"3#\ into a set
of nonlinear ordinary di}erential equations[ Assuming
the temperature _eld T"x\ y\ t# as a linear combination of
empirical eigenfunctions as follows]

T"x\ y\ t# � s
ME

i�0

ai"t#fi"x\ y# "6#

where fi is the i!th empirical eigenfunction\ ai is the cor!
responding spectral coe.cient and ME is the total num!
ber of empirical eigenfunctions employed in the Kar!
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Fig[ 1[ Snapshots obtained at "a# t � 9[997\ "b# t � 9[905\ "c# t � 9[92\ "d# t � 9[957\ "e# t � 9[037\ "f # t � 9[393[

hunenÐLoe�ve Galerkin procedure[ The residual may be
expressed as]

R 0
1T
1t

−
1

1x 0k
1T
1x1−

1

1y 0k
1T
1y1

−G"t#dn"x−x$#dn"y−y$#[ "7#

Applying the Galerkin principle which enforces the
residual to be orthogonal to each of the basis functions\

gV
Rfi dV � 9 "i � 0\ 1\ [ [ [ \ ME# "8#

the equations "2#Ð"3# are reduced to the following set of
nonlinear ordinary di}erential equations[

dai

dt
¦ s

ME

j�0

Hijaj¦a s
ME

j�0

s
ME

l�0

Qijlajal � G"t#Si

"i � 0\ 1\ [ [ [ \ ME# "09#

where

Hij � gV 0
1fi

1x
1fj

1x
¦

1fi

1y
1fj

1y 1 dV "00#

Qijl � gV 0
1fi

1x
1fj

1x
¦

1fi

1y
1fj

1y 1fl dV "01#

Si � gV
fid39"x−x$#d39"y−y$# dV[ "02#
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Fig[ 2aÐf[ Some typical empirical eigenfunctions with the corresponding normalized eigenvalues[

Equation "09# can be easily solved by means of any ordi!
nary di}erential equation solver[

The performance of the low!dimensional model equa!
tion "09# may be evaluated by comparing its solution
with the _nite di}erence solution of equation "2#\ which
is regarded as the exact solution\ for a given strength of
heat source\ G"t#[ Usually the error of the low!dimen!
sional dynamic model decreases as the number of eig!
enfunctions employed increases up to the optimal number
of empirical eigenfunctions[ But further increase of num!
ber of eigenfunctions beyond the optimal number does
not improve the accuracy because the eigenfunctions with
very small eigenvalues are contaminated with round!o}

errors[ For the present work\ the optimal number of
empirical eigenfunctions is found to be 09\ and thus we
are going to employ 09 eigenfunctions for the con!
struction of the low!dimensional dynamic model[ The
relative error of the low!dimensional model\ constructed
with 09 empirical eigenfunctions\ is found to be less than
9[1) for the case of a step change of G"t#[

1[4[ Solution of inverse problem employin` the ori`inal
nonlinear partial differential equation

Before presenting the algorithm for solving the inverse
problem employing the low dimensional dynamic model\
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we _rst describe how to solve the same problem by the
_nite di}erence solution of the original nonlinear partial
di}erential equation[ The temperature _eld inside the
domain\ which can be easily measured at various
locations\ is determined by the heat source function G"t#[
Therefore\ G"t# can be estimated by using the measured
values of the temperature _eld at certain locations[ The
performance function for the identi_cation of G"t# is
expressed by the sum of square residuals between cal!
culated and observed temperature as follows]

J �
0
1

s
MO

m�0 g
t
f

9

ðT"xm\ ym\ t#−T�"xm\ ym\ t#Ł1 dt "03#

where T"xm\ ym\ t# is the calculated temperature\
T�"xm\ ym\ t# is the observed temperature at the location
"xm\ ym#\ and MO is the total number of measuring points[
Although only one measuring point is employed in the
present work "i[e[\ MO � 0#\ the summation over
measuring points is kept to make the formula more
general[

To minimize the performance function "03#\ we need
the gradient of J\ 9J\ which is de_ned by

dJ"G# 0 J"G¦dG#−J"G#

� g
t
f

9

9JdG dt "04#

where tf\ the _nal time\ is 9[1[ The function 9J can be
obtained by introducing an adjoint variable P"x\ y\ t#\
and rewriting the performance function as follows]

J"G# �
0
1

s
MO

m�0 g
t
f

9

ðT"xm\ ym\ t#−T�"xm\ ym\ t#Ł1 dt

−g
t
f

9 gx gy

P"x\ y\ t# $
1T
1t

−
1

1x 0k
1T
1x1−

1

1y 0k
1T
1y1

−G"t#d39"x−x$#d39"t−y$#% dy dx dt[ "05#

The variation of J\ dJ\ is then given by the following
equation]

dJ"G# � s
MO

m�0 g
t
f

9

ðT"xm\ ym\ t#

−T�"xm\ ym\ t#ŁdT"xm\ ym\ t# dt

−g
t
f

9 gx gy

P $
1

1t
dT

−
1

1x 0k
1

1x
dT1−

1

1y 0k
1

1y
dT1

−
1

1x 0dk
1

1x
T1−

1

1y 0dk
1

1y
T1

−dGd39"x−x$#d39"y−y$#% dy dx dt[ "06#

Integrating dJ by parts both in space and time\ and
exploiting the initial and boundary conditions for T and
dT\ the gradient of J\ 9J\ in equation "04# is found to be
as follows]

9J � gx gy

P"x\ y\ t#d39"x−x$#d39"y−y$# dy dx "07#

while the adjoint variable P"x\ y\ t# must satisfy]

1P
1t

� −0
1

1x
k

1P
1x

¦
1

1y
k

1P
1y1¦a 0

1P
1x

1T
1x

¦
1P
1y

1T
1y1

− s
MO

m�0

ðT"x\ y\ t#−T�"x\ y\ t#Łd"x−xm#d"y−ym# "08#

with the starting condition\

P"x\ y\ t � tf# � 9 "19#

and boundary conditions]

P"x � 9\ y\ t# � 9 "10a#

P"x � 0\ y\ t# � 9 "10b#

P"x\ y � 9\ t# � 9 "10c#

P"x\ y � 0\ t# � 9[ "10d#

The function d in equation "08# is the usual Dirac delta
function[ The FletcherÐReeves method ð5Ł\ which is one
of the conjugate gradient methods\ is successfully applied
to the minimization of the performance function\ using
the gradient of J determined by equation "07#[ The search
direction or the conjugate direction at the _rst step is
determined by]

d9"t# � 9J"t#

� gx gy

P"x\ y\ t#d39"x−x$#d39"y−y$# dy dx[ "11#

Beginning the second iteration step\ the conjugate direc!
tion is given by

dn"t# � 9Jn"t#¦gndn−0"t# "12#

where

gn �
g

T

9

"9Jn"t##1 dt

g
T

9

"9Jn−0"t##1 dt

"13#

and n is the iteration number[
The optimal step length r in the direction of dn is

obtained by minimizing J"Gn−rdn# with respect to r[
Formally\ J"Gn−rdn# is expressed as]

J"Gn−rdn# �
0
1 g

t
f

9 gV
s
MO

m�0

ðT"x\ y\ t ^ Gn−rdn#

−T�"x\ y\ t#Ł1d"x−xm#d"y−ym# dV dt[ "14#

The directional derivative of T at G"t# in the direction of
d"t#\ denoted as dT\ is de_ned by
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dT � lim
o:9

T"G¦od#−T"G#
o

[ "15#

Then\ the term T"x\ y\ t^ Gn−rdn# in equation "14# is
approximated by

T"x\ y\ t ^ Gn−rdn# � T−"dT#r[ "16#

Substituting equation "16# into equation "14# and par!
tially di}erentiating it with respect to r and setting the
resulting equation equal to zero\ the value r that min!
imizes J"Gn−rdn# is obtained as\

r �
dJn

Kn
"17a#

where

Kn � s
MO

m�0 g
t
f

9

ðdT"xm\ ym\ t#Ł1 dt "17b#

and

dJn � s
MO

m�0 g
t
f

9

ðT"xm\ ym\ t#

−T�"xm\ ym\ t#ŁdT"xm\ ym\ t# dt[ "17c#

The updated heat source function Gn¦0"t# is obtained as

Gn¦0"t# � Gn"t#−rdn"t#[ "18#

The sensitivity equation which determines dT is given as
follows]

1

1t
dT �

1

1x 0k
1

1x
dT1¦

1

1y 0k
1

1y
dT1¦

1

1x 0dk
1T
1x1

¦
1

1y 0dk
1T
1y1¦d"t#d39"x−x$#d39"y−y$# "29#

where

dk � adT[ "20#

The relevant initial and boundary conditions are\

dT"x\ y\ t � 9# � 9 "21a#

dT"x � 9\ y\ t# � 9 "21b#

dT"x � 0\ y\ t# � 9 "21c#

dT"x\ y � 9\ t# � 9 "21d#

dT"x\ y � 0\ t# � 9[ "21e#

The present algorithm is summarized below]

"0# Assume the heat source function G"t# and calculate
the temperature _eld T by means of equation "2#[

"1# Solve the adjoint problem ðequations "08#Ð"10#Ł[
"2# 9J is determined by equation "07#[
"3# The conjugate direction dn"t# is given by equation

"12# with gn determined by equation "13#[
"4# Solve the sensitivity equations "29#Ð"21#[
"5# The step length in the conjugate direction dn"t# is

determined by equations "17aÐc#[
"6# The updated heat source function is obtained by

equation "18#[

"7# Repeat the above procedure until convergence[

1[5[ Modi_ed conju`ate `radient approach ð2\ 6Ł

The conjugate gradient method employing the adjoint
variable\ as described in the previous section\ usually
converges fast\ but it has one serious defect as noticed by
other investigators ð2Ł[ The di.culty with this algorithm
is that the value of heat source function at the _nal time\
G"tf#\ will always be equal to the initial guess G9"tf#[ The
reason for this is explained by equations "07#\ "19#\ "11#\
"12# and "13#[ The di.culty encountered at the _nal time
tf can be alleviated by the following modi_ed conjugate
method ð2\ 6Ł[

We seek a continuously di}erentiable function G"t#
such that

G"t# � g
t

a

dG"t?#
dt?

dt?[ "22#

From equations "04# and "07#\ the variation of the per!
formance function dJ may be rewritten as]

dJ � g
t
f

9

dG"t# gV
P"x\ y\ t#d39"x−x$#d39"y−y$# dV dt[

"23#

If equation "23# is integrated by parts with respect to the
time variable\ we _nd that

dJ � −g
t
f

9

ddG
dt g

t

tf
gV

×P"x\ y\ t?#d39"x−x$#d39"y−y$# dV dt?[ "24#

Therefore\ the derivative of J with respect to dG:dt is
given by the following expression[

9J 0
dG
dt 1� −g

t

tf
gV

P"x\ y\ t?#dn"x−x$#dn"y−y$# dV dt?[

"25#

Then\ we take the conjugate direction as follows ð2\ 6Ł]

dn"t# � g
t

9

Dn"t?# dt? "26#

where

Dn � 9J 0
dG
dt 1

n

¦gnDn−0[ "27#

Since dn"tf#\ obtained by equation "26#\ is nonzero\ the
modi_ed conjugate gradient method yields reasonably
accurate value of G"tf# contrary to the regular conjugate
gradient method[ On the other hand\ from equation "26#
it can be seen that dn"9# � 9[ Then\ for the same reason
with the regular conjugate gradient method\ the modi_ed
conjugate gradient method will not improve the starting
value G"9#[ In the present work\ this dilemma is overcome
by combining the regular and modi_ed conjugate gradi!
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ent method sequentially[ At the _rst stage\ we employ the
modi_ed conjugate gradient method for a certain number
of iterations until a reasonably good estimation of the end
value G"tf# is attained[ Afterwards\ the regular conjugate
gradient method is adopted using the estimation of the
modi_ed conjugate gradient method as the initial
approximation until the converged pro_le is obtained[

1[6[ Solution of inverse problem employin` the low!dimen!
sional dynamic model of the KarhunenÐLoe�ve Galerkin
procedure

Employing the low dimensional model equation "09#
obtained by means of the KarhunenÐLoe�ve Galerkin pro!
cedure\ one can also estimate the unknown heat source
function G"t# based on measurement of the temperature
_eld at certain locations[ The degree of freedom of equa!
tion "09# is only 09\ whereas the degree of freedom of the
original partial di}erential equation\ which is equivalent
to the grid number in the _nite di}erence approximation\
is 39×39 "¼0599#[ Therefore\ the procedure of solving
inverse problems employing the low!dimensional model
is predestined to be much faster than that employing the
original nonlinear partial di}erential equation[

The performance function "03# may be rewritten in
terms of the empirical eigenfunctions fi and cor!
responding spectral coe.cients ai as]

J �
0
1

s
MO

m�0 g
t
f

9 $s
ME

i�0

ai"t#fi"xm\ ym#−T�"xm\ ym\ t#%
1

dt[

"28#

Following the same procedure as that in Section 1[4\ the
performance function "28# may be rewritten with the
introduction of adjoint variables pk"t#\ k � 0\ 1\ [ [ [ \ME[

J"G# �
0
1

s
MO

m�0 g
t
f

9 $s
ME

i�0

ai"t#fi"xm\ ym#−T�"xm\ ym\ t#%
1

dt

−g
t
f

9

s
ME

k�0

pk"t# $
dak

dt
¦ s

ME

i�0

Hkiai¦a s
ME

i�0

s
ME

l�0

Qkilaial

−G"t#Sk% dt[ "39#

Then the gradient of the performance function\ 9J\ is
found after integrating dJ by parts in time and exploiting
the initial conditions for dai"t# as follows]

9J � s
ME

k�0

pk"t#Sk[ "30#

The adjoint variables pk"t# "k � 0\ 1\ [ [ [ \ME# must
satisfy the following ordinary di}erential equations\

dpk

dt
− s

ME

i�0

piHik−a s
ME

i�0

s
ME

l�0

piQiklal−a s
ME

l�0

s
ME

i�0

plQlikai

¦ s
ME

m�0 $s
ME

i�0

aifi"xm\ ym#−T�"xm\ ym\ t#%fk"xm\ ym# � 9

"k � 0\ 1\ [ [ [ \ ME# "31a#

with the following starting conditions at t � tf]

pk"t � tf# � 9 "k � 0\ 1\ [ [ [ \ ME#[ "31b#

The gradient of the performance function\ 9J\ given by
equation "30# is exploited in the conjugate gradient
method of Fletcher and Reeves ð5Ł to minimize the per!
formance function "28#[ The sensitivity equation for this
case is given by]

1

1t
dai¦ s

ME

k�0

Hikdak¦a s
ME

k�0

s
ME

l�0

Qikldakal

¦a s
ME

k�0

s
ME

l�0

Qiklakal � d"t#Si "i � 0\ 1\ [ [ [ \ ME# "32a#

with the initial conditions\

dai"t � 9# � 9 "i � 0\ 1\ [ [ [ \ ME#[ "32b#

Here\ d"t# is the conjugate direction which is updated in
each iteration by the following rule]

dn"t# � 9Jn"t#¦gndn−0"t# "33#

where

gn �
g

t
f

9

"9Jn"t##1 dt

g
t
f

9

"9Jn−0"t##1 dt

"34#

with g9 � 9\ and n is the iteration number[ The value of
r that minimizes J"Gn−rdn# is obtained\ as previously\
by di}erentiating J"Gn−rdn# with respect to r and setting
the resulting equation equal to zero]

r �

s
MO

m�0 g
t
f

9 $s
ME

i�0

ai"t#fi"xm\ ym#−T�"xm\ ym#%
×$s

ME

i�0

dai"t#fi"xm\ ym#% dt

s
MO

m�0 g
t
f

9 $s
ME

i�0

dai"t#fi"xm\ ym#%
1

dt

[ "35#

The FletcherÐReeves algorithm is applied to the inverse
problem employing the low!dimensional dynamic model
follows the procedure below]

"0# Assume G"t# and calculate ai"t# "i � 0\ 1\ [ [ [ \ME#
using equation "09#[

"1# Solve the adjoint problem with appropriate terminal
conditions ðequations "31a#Ð"31b#Ł[

"2# The gradient of the performance function\ 9J\ is
given by equation "30#[

"3# The conjugate direction at the n!th iteration is given
by equation "33#\ where gn is given by equation "34#[
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"4# Solve the sensitivity equation with the relevant initial
conditions\ i[e[\ equations "32a#Ð"32b#[

"5# Determine r that minimizes J"Gn−rdn# by equation
"35#[

"6# The heat source function G"t# is updated by

Gn¦0"t# � Gn"t#−rdn"t#[ "36#

"7# Repeat the above calculations until convergence[

The regular conjugate gradient method applied to the
low!dimensional dynamic model\ as described above\ has
the same di.culty as what it has for the nonlinear partial
di}erential equation\ i[e[\ the heat source function at the
terminal time\ G"tf#\ is not updated since 9J is zero at
t � tf ðcf[ equations "30#\ "31b#\ "33#\ "34# and "36#Ł[ This
di.culty has been overcome by applying the modi_ed
conjugate gradient method and securing reasonably accu!
rate _nal value of G"t# before applying the regular con!
jugate gradient method as we have done for the original
nonlinear partial di}erential equation "cf[ Section 1[5#[

2[ Results

The inverse heat transfer problem we consider in the
present investigation is the prediction of time!varying
strength of a heat source from the knowledge of tem!
perature recordings taken inside the domain "cf[ Fig[ 0#[
We consider three di}erent cases of heat source function
G"t#\ as depicted in Fig[ 3"aÐc#\ and compare the accuracy
and e.ciency of the present method of solving this
inverse conduction problem employing the KarhunenÐ
Loe�ve Galerkin procedure with those of the conventional
method employing the original nonlinear partial di}er!
ential equation "2#[ For brevity\ we call the method
employing the original partial di}erential equation the
FDM!CG\ and the method employing the low!dimen!
sional model the KLG!CG[ In both methods\ the min!
imization of the performance function has been done by
means of the conjugate gradient method suggested by
Fletcher and Reeves ð5Ł[ The initial approximation of
G"t# is taken to 9[9 "constant# for all the numerical exper!
iments described below[

The equations of G"t# for the three cases shown in Fig[
3 are as follows]

Case "a#

G"t# � 19
9[95

t¦1[4\ 9[9 ¾ t ¾ 9[95

G"t# � − 04
9[95

t¦26[4\ 9[95 ¾ t ¾ 9[01

G"t# � 6[4 9[01 ¾ t ¾ 9[1 "37#

Case "b#

G"t# � 099t¦1[4\ 9[9 ¾ t ¾ 9[1[ "38#

Case "c#

G"t# � 1[4\ 9[9 ¾ t ¾ 9[95

G"t# � 11[4\ 9[95 ¾ t ¾ 9[03

Fig[ 3aÐc[ Various shapes of heat source functions considered in
the present investigation[

G"t# � 1[4\ 9[03 ¾ t ¾ 9[1[ "49#

We quantify the accuracy of each method by de_ning the
estimation error as follows]

Error �
>Gestimated−Gexact>1

L1

>Gexact>1
L1

"40#

where >=>L1 is the usual L1!norm[ Equation "2# is solved
by using a _nite di}erence method and we adopt these
numerical solutions as experimental measurements after
adding small random noises[ Namely\

Tmeasured"�T�# � Texact¦vs "41#

where s determines the noise level\ which takes values of
9[9\ 9[94 or 9[97\ and v is a random number between
−1[465 ³ v ³ 1[465[ In fact\ s is the standard deviation
of measurement errors which are assumed to be the same
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for all measurements\ and v is the Gaussian distributed
random error[ The above range of v value corresponds
to the 88) con_dence bound for the temperature
measurement[

To check the accuracy and e.ciency of the new method
of solving the inverse heat conduction problem\ we _rst
consider an idealized situation in which there are no
measurement errors\ i[e[\ s � 9[9[ The temperature re!
cordings are assumed to be done continuously by a ther!
mocouple located at the position "9[3537\ 9[1371# while
the source is located at "9[14\ 9[14# as shown in Fig[ 0[
Figure 4"aÐd# show the estimated heat source function
G"t# for the Case "a# when the regular conjugate gradient
and the modi_ed conjugate gradient method are
employed in the FDM!CG and KLG!CG\ respectively[
The result of FDM!CG with regular conjugate gradient
is plotted in Fig[ 4"a#\ that of KLG!CG with regular
conjugate gradient in Fig[ 4"b#\ that of FDM!CG with
modi_ed conjugate gradient in Fig[ 4"c#\ and _nally that
of KLG!CG with modi_ed conjugate gradient in Fig[
4"d#[ As explained in Sections 1[4 and 1[5\ it is shown
that the regular conjugate gradient method does not

Fig[ 4[ The estimated pro_les of heat source function[ "a# FDM!CG employing the regular conjugate gradient method[ "b# KLG!CG
employing the regular conjugate gradient method[ "c# FDM!CG employing the modi_ed conjugate gradient method[ "d# KLG!CG
employing the modi_ed conjugate gradient method[

improve the end point value G"tf# while the modi_ed
conjugate gradient method has the same problem with
the starting point value G"9# for both the FDM!CG and
KLG!CG[

To overcome these di.culties\ a combined iteration
scheme\ which combines the modi_ed and regular con!
jugate gradient method sequentially\ is employed to get
the results presented in the following[ Namely\ at the _rst
stage\ we employ the modi_ed conjugate gradient method
for a certain number of iterations until a reasonably
good estimation of the end point value G"tf# is attained[
Afterwards\ the regular conjugate gradient method is
adopted using the estimation of the modi_ed conjugate
gradient method as the initial approximation to get the
_nal converged pro_le[ Figure 5 shows the convergence
of the end point value G"tf# with respect to the iteration
number for the Case "a# when using a modi_ed conjugate
gradient method[ The error of G"tf# with the modi_ed
conjugate gradient method is de_ned by]

Error � s
2

i�0

=Gn"tf#−Gn−0"tf# =
=Gn"tf# =

"42#
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Fig[ 5[ The convergence of the end point value G"tf# with respect to iteration number when using the modi_ed conjugate gradient
method[

and the iteration of the modi_ed conjugate gradient is
stopped when EmCG ³ 9[90[

Figure 6 depicts the convergence rate of the combined
iteration scheme for the Case "a#[ The value of the per!
formance function J is reduced rapidly only after a couple
of iterations both with the FDM!CG and KLG!CG[
But we need usually many more iterations to make the
starting point value G"9# and the end point value G"tf#
converged[ Figures 7"aÐb# show the estimated pro_le of
heat source function for the Case "a#[ These results show
that both the estimated pro_le based on the FDM!CG
and that based on the KLG!CG are in excellent agree!
ment with the exact heat source function over the whole
domain\ with the errors of the converged pro_les\ deter!
mined by equation "40#\ being 7[1383×09−4 and
8[2272×09−4\ respectively[ The numbers of iterations in
the steps of modi_ed conjugate gradient and regular con!
jugate gradient are also indicated in these _gures[ Simi!
larly\ the converged pro_les of estimated heat source
function for the Case "b# ðequation "38#Ł are shown in
Fig[ 8"a# and "b# for the FDM!CG and the KLG!CG\
with the estimation error of 1[5499×09−3 and
1[5366×09−3\ respectively[ Also shown in Fig[ 09"aÐb#
are the converged pro_les of G"t# for the Case "c# ðequa!
tion "49#Ł\ with the estimation errors of 8[9550×09−2

"FDM!CG# and 8[4698×09−2 "KLG!CG#[ For various
shapes of the heat source function G"t#\ one can obtain
very accurate results by either FDM!CG or KLG!CG\
when the noise level s is zero and the location of the
thermocouple is at "9[3537\ 9[1371#[

Next\ we consider the e}ects of noise level on the accu!
racy of the estimated pro_les of heat source function
when using the FDM!CG or the KLG!CG[ In all prac!
tical experimental situations it is expected that some error
will be induced into the measurements[ When there are
measurement errors\ we have to use the following dis!
crepancy principle for the stopping criterion of the iter!
ative procedure of the conjugate gradient method ð2\ 7Ł[
We assume

T"xm\ ym#−T�"xm\ ym# ¼ s[ "43#

Introducing this result into equation "03#\ we _nd

J ¼
0
1 g

t
f

9

s
MO

m�0

s1 dt 0 o1[ "44#

Then the discrepancy principle for the stopping criterion
is taken as

J ³ o1[ "45#

If the functional J has a minimum value that is larger
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Fig[ 6[ Convergence rate of the combined iteration scheme[ The value of the performance function J is reduced rapidly only after a
couple of iterations both with the FDM!CG and KLG!CG[

Fig[ 7[ The estimated pro_les of heat source function for the Case "a# when the combined iteration scheme is employed[ "a# FDM!CG\
"b# KLG!CG[
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Fig[ 8[ The estimated pro_les of heat source function for the Case "b#[ "a# FDM!CG\ "b# KLG!CG[

Fig[ 09[ The estimated pro_les of heat source function for the Case "c#[ "a# FDM!CG\ "b# KLG!CG[
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than o1\ the following criterion is used to stop the iter!
ation]

J"G "i¦0##−J"G "i## ³ o0 "46#

where o1 is a prescribed small number[
Figures 00"aÐd# show the estimated heat source func!

tions obtained either by the FDM!CG or by the KLG!
CG for various values of the noise level s[ If the noise
level is the same "s � 9[94 or s � 9[97#\ the accuracy of
the FDM!CG and the KLG!CG is almost the same[
These _gures also reveal that with both the FDM!CG
and KLG!CG\ the accuracy deteriorates as the noise level
increases[

Figures 01"aÐd# show the e}ect of location of ther!
mocouple on the accuracy of the estimated heat source
function[ In addition to the previous default location
"xm\ ym# �"9[3537\ 9[1371#\ we consider two more
locations farther from the heat source than the default
one\ i[e[\ "9[5997\ 9[1371# and "9[6072\ 9[1371#[ Figures
01"aÐb# are for "9[5997\ 9[1371# and Figs 01"cÐd# are for
"9[6072\ 9[1371# when s � 9[ Comparing results of Figs
7"aÐb# with those of Figs 01"aÐd#\ we _nd that as the

Fig[ 00[ The estimated pro_les of heat source function for the Case "a#\ when the noise level s is not zero[ "a# FDM!CG\ s � 9[94\ "b#
KLG!CG\ s � 9[94\ "c# FDM!CG\ s � 9[97\ "d# KLG!CG\ s � 9[97[

location of thermocouple approaches that of heat source\
the accuracy improves both with the FDM!CG and the
KLG!CG\ since the sensitivity of the temperature _eld
with respect to the heat source increases as the distance
between the measurement point and the heat source
decreases[

One of the most important results in the present
investigation is the comparison of CPU time required
when estimating the heat source function by employing
either the FDM!CG or the KLG!CG[ When the Ultra!
sparc workstation is used\ it takes only 5 s for the
KLG!CG to yield the converged pro_le of heat source
function for the Case "a# ðcf equation "37#Ł\ whereas it
takes 04 min 10 s for the FDM!CG to generate the
same result[ If the computer codes adopted in the
present investigation were optimized\ the CPU time for
both methods will be reduced proportionally[ This
drastic reduction in CPU time when employing the
KLG!CG is easily expected from the fact that the
degree of freedom of low!dimensional dynamic model
is far less than that of the original nonlinear partial
di}erential equation[
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Fig[ 01[ The e}ect of location of thermocouple on the accuracy of the estimated heat source function[ "a# FDM!CG\
"xm\ ym# �"9[5997\ 9[1371#\ "b# KLG!CG\ "xm\ ym# �"9[5997\ 9[1371#\ "c# FDM!CG\ "xm\ ym# �"9[6072\ 9[1371#\ "d# KLG!CG\
"xm\ ym# �"9[6072\ 9[1371#[

3[ Conclusions

The KarhunenÐLoe�ve Galerkin procedure is employed
for the solution of the inverse problem of determining
the time!varying strength of a heat source based on tem!
perature recordings inside the domain[ The performance
function\ which is the sum of square residuals between
calculated and observed temperature\ is minimized by
using the conjugate gradient method[ This method of
solving inverse heat transfer problems\ called KLG!CG
in the present paper\ has been compared with the tra!
ditional method employing the original partial di}er!
ential equation "FDM!CG# in terms of accuracy and
e.ciency[ The present investigation reveals that the
KLG!CG yields estimations as accurate as the FDM!CG
for various shapes of heat source function with various
degree of noise levels[ The degree of freedom of the low!
dimensional model from the KarhunenÐLoe�ve Galerkin
procedure is only 09\ whereas that of the _nite di}erence
solution of the original partial di}erential equation is
about 0599[ This drastic reduction in degree of freedom

with the use of the KLG!CG as compared to the FDM!
CG reduces the computer time tremendously without
deteriorating accuracy in the inverse analysis[
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